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1. AGENTS

The term agent is used today to mean anything between a mere subroutine to a conscious entity.
There are “helper” agents for web retrieval and computer maintenance, robotic agents to venture into
inhospitable environments, agents in an economy, etc. Intuitively, for an object to be referred to as
an agent it must possess some degree of autonomy, that is, it must be in some sense distinguishable
from its environment by some kind of spatial, temporal, or functional boundary. It must possess
some kind of identity to be identifiable in its environment. To make the definition of agent useful,
we often further require that agents must have some autonomy of action, that they can engage in
tasks in an environment without direct external control. This leads us to an important definition of
an agent from the XIII century, due to Thomas Aquinas: an entity capable of election, or choice. 

This is a very important definition indeed; for an entity to be referred to as an agent, it must be able
to step out of the dynamics of an environment, and make a decision about what action to take next
– a decision that may even go against the natural course of its environment. Since choice is a term
loaded with many connotations from theology, philosophy, cognitive  science, and so forth, I prefer
to discuss instead the ability of some agents to step out of the dynamics of its interaction with an
environment and explore different behavior alternatives. In physics we refer to such a process as
dynamical incoherence [Pattee, 1993]. In computer science, Von Neumann, based on the work of
Turing on universal computing devices, referred to these systems as memory-based systems. That
is, systems capable of engaging with their environments beyond concurrent state-determined
interaction by using memory to store descriptions and representations of their environments. Such
agents are dynamically incoherent in the sense that their next state or action is not solely dependent
on the previous state, but also on some (random-access) stable memory that keeps the same value
until it is accessed and does not change with the dynamics of the environment-agent interaction. In
contrast, state-determined systems are dynamically coherent (or coupled) to their environments
because they function by reaction to present input and state using some iterative mapping in a state
space. 

Let us then refer to the view of agency as a dynamically incoherent system-environment engagement
or coupling as the strong sense of agency, and to the view of agency as some degree of identity and
autonomy in dynamically coherent system-environment coupling as the weak sense of agency. The
strong sense of agency is more precise because of its explicit requirement for memory and ability to
effectively explore and select alternatives. Indeed, the weak sense of agency is much more subjective
since the definition of autonomy, a boundary, or identity (in a loop) are largely arbitrary in
dynamically coherent couplings. Since we are interested in simulations of decision-making agents,
we need to look in more detail to agent based models with increasing levels of dynamical
incoherency with their environments.
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To summarize:

1. Dynamically Coherent Agents
a. Rely on subjective (spacial, functional, temporal) definition of autonomy.

Function by reaction and are dynamically coupled to environments.
b. Example: situated robots (wall-following machines), state-determined automata.

2. Dynamically Incoherent Agents
a. Possess models, syntax, language, decision-making ability. In addition to a level

of dynamical coherence with their environments (material coupling), they possess
an element of dynamical incoherence implemented by stable memory banks.

b. Example: anything with symbolic memories and codes.

2. AGENTS: HOLLAND’S COMPLEX ADAPTIVE SYSTEMS

John Holland [1995] defines agents as rule-based input-output elements whose rules can adapt to
an environment. These rules define the behavior strategy utilized by agents to cope with a changing
environment. He also defines 7 basics or characteristics of agents and multi-agent sysems which
further specify the rule-based adaptive behavior of agents:

1. Aggregation (Property) has 2 senses
a. Categorization (agent level): Agents cope with their environments by grouping

things with shared characteristics and ignoring the differences.
b. Emergence of large-scale behavior (multi0agent level): From the aggregation of

the behavior of individual agents (e.g. Ants in an ant colony) we observe
behavioral patterns of organization at the collective level. This leads to
hierarchical organization.

2. Tagging (Mechanism). Agents need to be individualized. They possess some identity.
This in turn facilitates selection, specialization of tasks, and cooperation as different
specific roles and strategies may be defined.

3. Nonlinearity (Property). The integration or aggregation of agents in multi-agent systems
is most often non-linear, in the sense that the resulting behavior cannot be linearly
decomposed into the behavior of individual agents. This also implies that multi-agent
systems lead to network causality, as effect and cause of agent behavior follow circular
loops that cannot be linearly decomposed into traditional cause and effect chains.

4. Flows (Property). Multi-agent systems rely on many connections between agents that
instantiate the flow and transfer of interactions, information, materials, etc. Typically, the
network of flows is represented with graphs.

5. Diversity (Property). Typically, multi-agent systems are heterogeneous, as there exist
different agent roles and behaviors. This makes the tagging mechanisms important so that
these different roles and behaviors may be identified.
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6. Internal Models (Mechanism) organize the rules that produce agent behavior and can be
used to let agents anticipate expected inputs from the environment. We can divide models
in 2 types.
a.  Implicit: Prescribes a current action under implicit prediction. This is associated

with hard-wired rules of behavior (e.g. by natural selection) and implemented by
state-determined automata. This kind of model instantiates agents which are
dynamically coupled to their environments, e.g. reactive, situated robots.

b. Explicit: Use Representations stored in stable (or random access) memory to look
ahead by exploring possible alternatives. This type of model produces agents with
a level of dynamical incoherence with their environments, since they act not only
based on current state and input but also by integrating information stored in
memory. This integration can be pursued with more or less complicated reasoning
procedures. Since agents with explicit models possess behavior alternatives, we
can use them to study decision processes.

7. Building blocks (Mechanism). Agents are built with less complicated components. This
allows for the instantiation of coded construction, which is essential for the
recombination of components to produce new agent with different behavior and models.
Natural selection, for instance, acts on the ability to randomly vary descriptions of agents,
which are cast on a language coding for building blocks leading to the production of new
agents.

Holland’s 7 basics lend themselves to our notions of dynamical incoherence, and therefore we can
well use them to describe agents and (complex adaptive) multi-agent systems.



1 Defect if opponent defected last, cooperate if opponent cooperated last. Start by
cooperating.
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3. REVIEW OF AGENT MODELS: FROM STRATEGIES TO EXPLICIT MODELS AND

BELIEFS

3.1 Encounters and Strategies

The agents in the models described in this section are based on game-theoretic strategies, using
simple memory architectures. The environments in these models are defined exclusively by other
agents, therefore there is really no level of dynamical coupling between agent and environment.
Rather, these models aim to study only decision strategies and the evolution of strategies in an
environment of other changing strategies. However, the strategies pursued by these agents rely on
present state and a memory of only a small number of previous states and encounters. In addition,
typically, the agent-rule updating is synchronous (all agents updated at the same time) and there is
a determined behavior outcome. This results in dynamically coherent multi-agent systems, since
agents cannot choose when and whether to participate, and their rules are determined by a short list
of previous states. 

3.1.1 Iterated Prisoner’s Dilemma: Evolutionary Strategy Dynamics

Idealized model for real-world phenomena such as arm-races (Axelrod, 1984) and Evolutionary
Biology (Maynard-Smith, 1982), iut of Game Theory as defined by Von Neumann, Economics, and
Political Science. The dilemma is defined as follows:  2 individuals are arrested for committing a
crime together are held in separate cells; no communication is allowed; both are offered the same
deal to testify against the other (both know this); if one testifies (defects) gets a suspended sentence
(S) and the other gets the total sentence (T); if both testify (defect), the testimony is discredited: both
receive a heavy sentence (H); if neither one confesses (cooperate) both are convicted to a lesser
sentence (L). These values must obey the following 2 conditions: (1) S>L>H>T and (2) 2L>S+T.

� EVOLUTIONARY PHENOMENA IN SIMPLE DYNAMICS, Kristian Lindgren [1991]. Finite
memory strategies for the iterated prisoner’s dilemma (IPD) were encoded in a genetic
algorithm (GA). Each agent contains a strategy hm, which specifies how the agent should
play each iteration of the prisoner’s dilemma game, based on a memory of size m. a0

denotes what the opponent did in the last encounter, a1 denotes what the agent did in the
last encounter, a2, what the opponent did in the one but the last encounter, and so forth.
The tit for tat1 (TFT) strategy is a strategy of memory m=0, as it only requires memory of
what the opponent did last. 
� Details of the GA:

- Encoding (see figure 1). After ordering the binary possibilities of the rule,
only the right side of the rules is encoded as a genetic description. For
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Figure 1: Encoding of IPD strategies in Lindgren’s GA.
C denotes cooperate, and D defect.

TFT, the binary possibilities are: 0 or 1 (opponent defected or cooperated)
and the rule specifies 0 or 1 respectively as a strategy. This wat, TFT is
oencode as [01]. See figure 1 for an example of an extension of TFT for
m=1.

- The initial population of the GA possesses equal fractions of 4 strategies
m=0: [00], [01], [10], and [11]

- Random operators. Point mutations, which flip a bit on the strategy: [01]
� [00] (2x10-5); gene duplications which increase the memory size by 1
(do not change actual strategy): [01] � [0101] (10-5); and split mutations,
which decrease the memory size by 1 producing two possibly distinct
strategies: [1001] � [10] or [01] (10-5).

- Probability of mistake p. Probability that rule will produce opposite
outcome.

� Lindgren’s experiments show stasis, punctuated equilibria, varying speeds of
evolution, mass extinctions, symbiosis, and complexity increase. Unlike
Axelrod’s and Rappoport’s results previously, these experiments show that TFT is
not evolutionarily stable as there are strategies which play as well with TFT but
better against other strategies. 

� Experiments:
- Evolution of strategies of memory 1. See figure 2.
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Figure 2: TFT [01] takes over “snakes” [00], the “suckers” [11] grow,
and are exploited by Anti- TFT [10] and “snakes”, but TFT eventually
takes over again, etc. 600 generations.

Figure 3: After a long period of strong oscillations we get to a long period
of stasis with [0001], followed by oscillations with the arrival of memory 3
strategies in symbiosis (the success of [10010001] depends on the success of
[00011001] and vice-versa). 30000 generations.

- Evolution of strategies of memory 2 and 3. See figure 3.

- Evolution of strategies of memory 4 and beyond. See figure 4.
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Figure 4: Memory 4 strategies appear establishing a class of 512 strategies that can
lead [1xx10xxx0xxxx001]: Cooperative, but if one player accidently defects both
players defect twice before returning to cooperative behavior.  At this stage we also
observe the phenomena of mass extinction. Bottom figure shows the average fitness
(full) and number of different strategies (faint). Notice how we can expect periods of
large diversity followed by radical mass extinctions. 600000 generations.

� OTHER RELATED WORK.
� Karl Sigmund [1993] offers a very interesting overview of the original work by

Axelrod and Rappoport on the IPD.
� Melanie Mitchell [1996] and Klaus Emmeche [1994] offer an overview of

Lindgren’s experiments.
� There is no evolutionary stable strategy in IPD [Boyd and Loberbaun,1987; Farrell

and Ware, 1989]
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3.1.2 Extending the Prisoner’s Dilemma

� Including CHOICE AND REFUSAL OF GAME PLAYERS increases the emergence of
cooperation and results in more interesting modeling of negotiation strategies as
discovered by Stanley, Ashlock and Testfatsion, [1994]. This addition to the IPD tough
not a tremendous computational extension, offers a qualitatively different way of
modeling choice in the framework of the IPD. In this implementation, agents can refuse
to play with other agents given a past history of encounters. This addition can be seen to
increase the degree of dynamical incoherency between agents and their environment
comprised of other agents as agents can opt to decouple themselves from the on-going
strategy dynamics. Not surprisingly, this extension results in higher cooperation as agents
can choose to play only with other cooperating agents, thus obtaining higher payoffs. 

� Violating the second rule of the PD payoff scheme yields (as expected) strategies that
take turns exploiting one another [Angeline, 1994]

� Cooperation also emerges in non-iterated PD in spatially arranged environments
[Oliphant, 1994]. In this implementation, agents play the game with other agents in
their neighborhood. This allows us to study the emergence of spatially distributed
families of strategies.

3.2 Learning and Evolution

The agents in the models described in this section possess more interesting environments with
changing or non-trivial demands. The objective of these models is to study how learning and
knowledge can interact with evolution.

The Baldwin Effect (organic selection): If learning helps the survival of organisms (more plastic
behavior) then this trait should be selected.  If the environment is fixed, so that the best things to
learn remain fixed, the learned knowledge may be eventually genetically encoded via natural
selection. Example: animals capable of learning to avoid a new predator or other environmental
danger, will survive long enough to allow genetic variation to eventually discover that avoiding the
danger is useful trait to possess at a instinctual, genetically determined level. Waddington [1942]
referred to this process as genetic assimilation.

� HINTON AND NOWLAN [1987] EXPERIMENTS: Agents were modeled by a very simple
neural network and evolution was modeled by a Genetic Algorithm:
� 1000 encoded neural nets with 20 potential connections. A connection can be

present (1 � 25%), absent (0 � 25%), and learnable (? � 50%).
� Crossover, no mutation.
� Fitness: only one layout of 0's and 1's can solve the environment’s problem (all

others have 0 fitness) 220 possibilities.
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Figure 5: With the possibility of learning, the fitness landscape for the search
problem is smoother, with a zone of increased fitness containing individuals able to
learn the correct connection settings.

- If an agent has incorrect 1 or 0 it will never solve the problem, but those
with ?’s have the capacity to learn the correct pattern in 1000 learning
trials

- fitness function:  (1 + 19n/1000). tradeoff between efficiency and
plasticity.

� “Learning” algorithm: Random guessing (network guesses at each trial the value
of its connections). It is not a proper algorithm but it allows the modeling of the
plastic nature of knowledge.

� Without learning the fitness landscape would be a single spike, with the plasticity
of learning it becomes a smoother curve (figure 5).

� Fitness never increases in runs without learning, but there is convergence to the
solution when learning is introduced (figure 6, from [Belew, 1990]).
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Figure 6: Fitness plot for three runs with 250, 1000, and 4000 agents in population.

� Learning can be a way for genetically coded partial solutions to get partial credit,
allowing evolving agents to survive long enough for natural selection to discover
the genetic solutions. Belew [1990] showed that after long runs, the number of
unfixed positions (?) in the agents’ networks decreases, as individuals with
genetically encoded correct 1's and 0's eventually appear.

� These experiments show that even such trivial learning processes as random
guessing in simple neural networks, will yield advantages to evolving agents in
very harsh environments. Leaning provides ontogenetic plasticity to practically
impossible phylogenetic solutions.

� EVOLUTIONARY REINFORCEMENT LEARNING, [Ackley and Littman, 1991]. This model is
a much more complicated exploration of the interactions between learning and evolution.
It relies on an environment with no explicit evolutionary fitness function. Furthermore,
unlike a genetic algorithm, agents in a population do not reproduce on every single
generation, but only when certain necessary conditions are met. Agents are in this sense
asynchronous. This imbues the model with a certain degree of dynamical incoherency
between agents rules and environment laws which is both more realistic and important to
model decision processes. Another very important aspect of the agent architecture in this



12

Figure 7: Agent architecture: action and evaluation networks.
Architecture is encoded in the agents’ genetic descriptions which are
used, recombined, and mutated to produce new offspring.

model, is the distinction between innate, unchangeable, evaluation rules which denote the
agents’ “dispositions” or “beliefs” about their situation in the environment and the actual
rules of behavior that can change in the lifetime if the agents. A similar architecture
seems to be most appropriate to model decision processes for the agent models we
envision for this project – even without an evolutionary component.
� The model:

-  Agents in a 2-D environment with food, predators, hiding places, etc.
� Agent architecture with 2 feedforward neural networks:

- Evaluation net: gets agent state as input, produces judgement of how good
state is.  Fixed from birth (innate dispositions, goals and desires).

- Action net: gets agent state as input, produces a move command (which
can have many outcomes).  Weights changed during lifetime with
backpropagation/reinforcement learning algorithm. Implements the
behavior of agents.

- Fixed Architecture: only weights change for agents.

� The evolutionary algorithm uses genetic descriptions for each agent. These
descriptions encode (84) weights (of 4 bits) for networks (336 bits).
- Agents have an energy gauge and die for low values. They must find food

to keep energy at viable levels. Agents can only reproduce with enough
energy.
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Figure 8: Performance of runs with random motion (B), fixed random action
networks (F), learning alone (L), evolution alone (E), and the complete
evolutionary reinforcement learning algorithm (ERL).

- Agents can reproduce asexually with mutation only and sexually when
neighbor exists, with crossover and mutation.

- Fitness emerges from environment and not from a pre- specified function
(artificial life model).

� At each step of the computation the difference between current and previous
evaluation is the reinforcement signal to modify weights of the action net. This
way, agents learn to act in ways that lead to states “deemed” better by the agent’s
own innate evaluation net.

� Agents then move based on the adjusted weights of action net.
� Performance: time to extinction of a population.
� Results: Evolution alone (E) was not much better than random motion (B).

Learning plus evolution (ERL) was not much better than learning alone (L). The
authors propose that it is easier to generate randomly a good evaluation function
than a good action function, since the latter network is simpler. This way, in runs
without learning, the evolutionary algorithm cannot find a good behavior network.
This is similar to the previous model: the environment is too harsh for evolution.
On L runs, conversely, a good evaluation net is usually generated at random
initially, and learning is then able to produce a good action bet, while evolution
alone can not produce a good action net.
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� Interactions between learning and evolution. The authors used functional
constraints analysis, a traditional technique of evolutionary biology which studies
the rate of change of different parts of the genome, to gain deeper knowledge
about this model. This analysis centers on the notion that the more fixed parts of
the genome are assumed to be important for survival during a given period. They
observed genes associated with actions concerning food, evaluations concerning
food, and genes coding for nothing (inserted for this sake):
- Naturally, non-coding genes have the highest rate of mutation.
- Evaluation genes mutate more, which implies that action genes are more

functionally constrained. However, during the first stages of the
simulation, evaluation genes are much more stable.  Action genes become
constrained later. This leads us to conclude that learning is essential in the
first stages of the modeling experiment, but genetically encoded behavior
for actions in the environment becomes more functionally constrained in
latter stages: evidence for the Baldwin effect.
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Figure 9: The top graph shows the average number of mutations
(bit substitutions) per position per generation for an entire run and
for plant agents. Action genes were the most functionally
constrained. The bottom graphs separate the mutations before and
after 600 generations. This shows that at first, evaluation genes
were the most functionally constrained.

3.3 Evolution of Communication

Another class of models with interest to our problem area deals with the emergence and evolution
of communication among agents with no explicitly programmed ability to communicate.
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Figure 10:The block-expansion
rule simply expands local
neighborhoods with a large number
of automata in the same state.

� EMERGENT PARTICLE COMPUTATION. Crutchfield and Mitchell [1995]. In this model,
“agents” are simple boolean automata organized in a spatial one-dimensional lattice, or 1-
D cellular automata (CA). The CA needs to solve a non-trivial task such as the density
task: When the initial state of the whole lattice contains a majority of automata/agents
with state=1 (0), then the whole lattice should converge to an all-1 (0) state. This is a non-
trivial task because each agent has access solely to local information, namely the states of
its neighbors, yet the lattice as a whole is expected to perform a global task. Clearly, the
task can only be solved with some amount of information integration across the lattice.
The experiments were set up in the following way:
� Lattices of 149 (599, 999) boolean agent automata with boolean rules of radius 3

(7 cells in neighborhood).
� A Genetic Algorithm (GA) was used to evolve rules to solve this

task/environment. 
� A typical result from running the GA is the block-expansion rule (figure 10).

� But occasionally a rule emerges that can solve this task with much better results.
These rules create an intricate system of lattice communication. Groups of
adjacent automata propagate certain patterns across the lattice, which as they
interact with other such patterns “decide” on the appropriate solutions for the
lattice as a whole. An intricate system of signaling patterns and its communication
syntax has been identified, and can be said to establish the emergence of
embedded-particle computation in evolved CA’s [Crutchfield and Mitchell, 1995,
Hordijk et al, 1996]. The emergent signals (or embedded particles) refer to the
borders of the different patterns that develop in the space-time diagrams. If the
areas inside these patterns are removed, their boundaries can be identified as a
system of signals with a definite syntax, or emergent logic grammar. This syntax
is based on a small number of signals, �, �, �, �, �, and �,  and a small number
or rules such as: � + � � �, meaning that when signals � and � collide, the �
signal results. See Figure 11.
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Figure 11: 2 examples of a particle computation rule applied to the
density task on a lattice of 149 automata. The figure on the left
depicts the case where the rule does not solve the initial
configuration (it should converge to all white), while the figure on
the right solves the task correctly for the particular initial
configuration. The particles refer to the boundaries between the
different patterns.

� The system of particle computation uses signals that are capable of integrating
distant global information to solve the task. These CA rules rely on a system of
signals used to communicate across the lattice and compute the answer to the task:
an autonomous sign system that grants great selective advantage to the rules
capable of developing it. The particle computation system truly introduces a
qualitatively different way of solving the task: through the emergence of
autonomous syntax, which allows certain rules to gain access to global lattice
information [Rocha, 1998].

� Rocha[1998] has expanded these rules to solve more complicated tasks such as
logical operations. 
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� EVOLUTION OF COMMUNICATION. 
� Werner and Dyer [1991], developed a agent-based computer experiment in the

same line of thought as that of Ackley and Littman detailed above, to study the
evolution of communication. The environment of these agents was set up so that
blind male agents need to wander a 2-D environment in search of female agents
with sight and the capacity to emit “sounds”. Each agent has a distinct genome
which is interpreted to produce a neural network that defines the agent’s action
behavior. This model also does not possess an explicit fitness function for the
evolutionary algorithm. Rather, agents are given a certain amount of time to find a
mate a reproduce. This produces the desirable asynchrony as agents do not
reproduce all in the same time step. This results in overlapping generations with
the possibility of inter-generational communication – important for the evolution
and transmission of communication and knowledge. These experiments produced
a number of very interesting “species” of male-female agents tuned to their own
communication protocol or semantic closure. This model will undoubtedly also
provide good design principles for our intended simulations.

� Evolution of Learning in the Cultural Process. Hutchins and Hazlehurst [1991]
produced an agent-based computer experiment to study how communication can
and should emerge from the regularities of a given environment. The show that
the evolution of communication is based adaptation of agents’ internal structures
to the structure of the environment, that is, coordination between internal and
external structure. They embed their experiments in a framework which posits that
culture is a process that permits the learning of previous generations to have direct
effects on the learning of subsequent generations. Their experiments are also
fundamentally semiotic, as they posit that the signals that enable communication
of culture must be themselves somehow “physically” implemented in a
environment. In other words, communication must itself be based on some
structure that exists between agents and the environment in addition to agent
internal structure and environmental structure. This third kind of structure is of an
artifactual nature. This way, the agents of a cultural world have their internal
structure shaped by (in coordination with) two kinds of structure in the
environment: natural and artifactual. Their experiment is set up to produce agents
that may learn a language (using a “physical code) able to mediate between
environment regularities and artifactual descriptions of them. Their model sets up
a simple environment (loosely based on ethnographic records of California
Indians) where there is a relations between moon phase and tide state, which is
relevant for agents feeding on shellfish. They use a cultural selection algorithm on
agents that possess different neural networks for behavior and knowledge. They
show that with the availability of artifactual structure, the learning of the
relationship between moon phase and tide state is much more easily discovered
and propagated in the population of agents. This model will undoubtedly also
provide good design principles for our intended simulations. 
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Figure 12:Percent of configurations that are stable under shared knowledge compared
with linear constraints (with no constraints the number is zero according to Arrow’s
theorem).

� Similar experiments based on culture and language were also performed by
MacLennan [1991].

3.4 Agents with Shared Knowledge Structures

The last models of section 3.3 in their dealing with the evolution of communication, rely on the
evolution of common structures among agents used to enable communication, e.g. artifactual
structures. In this section we deal with models whose goal is to explicitly study the nature and
consequences of such shared structure among agents. Being more explicit, these models emanate
more from artificial intelligence, social science, and game theory, than from artificial life as the
previous models did.

� THE COLLECTIVE CHOICE MODEL of Richards, McKay, and Richards [1998]. This model
aims at the investigation of a fundamental problem of social choice models, particularly
those used to model collective choice of political alternatives. Previously, it has been
showed [e.g. Arrow, 1963, McKelvey, 1979] that the aggregation of elements into a
collective choice when many agents and possible choices are involved typically leads to
unstable, cyclic outcomes – for instance when we implement majority vote rules on
automata. This is clearly at odds with reality where societies are capable of reaching
stable political outcomes even in political systems with many available choices. The
authors claim that such cyclic behavior exists because the previous system used to study
collective choice do not make use of appropriate common structure among agents (this
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Figure 13: Example of a knowledge structure with 4 choices (above), and respective set
of possible partial orders (below).

claim is in line with the models of the previous section). Indeed, agents in previous
models are assumed to make their own choices autonomously. The authors show
mathematically and computationally that by establishing a shared knowledge structure,
the probability of such cyclic behavior is reduced dramatically (figure 12).
� The shared knowledge structure is implemented as a graph structure among

alternatives. Such a graph implements the regularities of a particular choice
landscape or environment. It is very reasonable to assume that alternatives are not
all equally related (or un-related), but possess some structure. For instance, when
deciding what kind of movie we want to watch, we all share some common
knowledge: we know that a horror movie is more related to a violent action movie
than to a romantic comedy. Likewise, we know that a Christian-democrat party is
more related to a social democrat than to a communist party.

� The shared knowledge structure implemented as a graph effectively establishes
constraints on the choices which implement the regularities of a given choice
system.

� From the shared knowledge structure, different partial orders can be established to
represent agents with different dispositions towards the shared knowledge
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structure. For instance, agents who prefer romantic comedies to horror movies,
etc. See figure 13.

4. DEVELOPING SEMIOTIC AGENTS

The architecture of semiotic agent models that we intend to design for this project will develop some
ideas presented in some of the models described on the review above. Semiotic agents need to be
based on a few fundamental characteristics of dynamical incoherency:

1. Asynchronous behavior. 
2. Situated Communication.
3. Shared and cultural nature of language and knowledge. 
4. Possession of evaluation capacity. 
5. Localized, decoupled memory.

The asynchronous rules of the agent designs we are interested in are similar to the models of Ackley
and Littman [1991] and the models of the evolution of communication. In these models agents do
not reproduce or perform actions a constant time-steps, rather their actions follow discrete-event
cues. This allows for inter-generational transmission of information, or more generally, the
cohabitation of agents with different environmental experience. Furthermore, as Hutchins and
Hazlhurst [1991], we assume that communication can only be based on the existence of
environmental tokens and regularity which must follow the laws of the environment – situated
communication (2). 

The asynchrony and situated communication requirements establish localized constraints on
communication and event-driven actions among agents. We wish to investigate the nature of these
constraints. We expect these constraints to be similar to the shared knowledge constraints of the
model of Richards et al [1998]. Notice that this model is based on synchronous updating. We
postulate that asynchrony and situated communication will result in the emergence of a shared
knowledge structure with the same characteristics of Richards’ et al model. Situated communication
and asynchrony will implement the realistic situation of having agents’ choice be dependent on the
choice their neighbors have pursued earlier as well as on the events in their neighborhood. This
would be an important theoretical result for the study of choice models.

As for the agents internal architecture, we want to set them up with something akin to the agents of
Ackley and Littman (which are similar to those of Werner and Dyer and Hutchins and Hazlhurst).
In particular we want to separate between evaluation and action networks, so that we can model
agents with different, independent beliefs about their present state and desirable goals (or the ability
to evaluate their situation) (4). However, we want their evaluation networks to be constrained by
shared knowledge structures either imposed on the set of alternatives or emergent from the asyncrony
and situated communication.
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Finally, eventually, we wish to endow agents with larger memory capacity so that we can model
more realistically the kind of agents we require for this project.
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